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Abstract

Introductory STEM courses may disproportionately deter women by understating these fields’
societal relevance or presuming prior technical knowledge. Leveraging a curricular reform in an
introductory computer science course at a liberal arts college that shifted emphasis from technical
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1 Introduction

The underrepresentation of women in science, technology, engineering, and math (STEM) has

been widely studied. While the gender gap is less pronounced in fields like biology, chemistry, and

mathematics in the U.S. (Cheryan et al., 2017), women remain significantly underrepresented in

computer science (CS), physics, and engineering, where the gender gap has plateaued at approximately

4-to-1 (Cheryan et al., 2017; Hill, Corbett and St. Rose, 2010). These disparities are driven in part

by faster growth in male participation and higher attrition rates among women (Penner and Willer,

2019). Because differential selection into math- and science-intensive fields explains a substantial

share of the gender wage gap, increasing gender parity in college major choice could meaningfully

reduce this gap (Brown and Corcoran, 1997; Blau and Kahn, 2000). It would also narrow gender

differences in the accumulation of STEM-related human capital, reduce misallocation of talent,

shape the future workforce, promote both efficiency and equality, and ease constraints on long-term

economic growth (Altonji, Blom and Meghir, 2012; Hsieh et al., 2019).

Past literature has emphasized two major channels behind women’s underrepresentation in

STEM majors: differences in preferences for major attributes, such as expected returns, job

amenities, and social values (Arcidiacono, 2004; Reuben, Wiswall and Zafar, 2017; Ngo and Dustan,

2024; Shi, 2018), and differences in prior knowledge of STEM (Stinebrickner and Stinebrickner,

2014; Akyol, Krishna and Lychagin, 2024; Arcidiacono et al., 2020). Numerous interventions have

been designed and implemented to target these channels. To address the first channel, offering

opportunities to interact with female instructors, role models, or advisors has been shown to

increase women’s likelihood of choosing and persisting in STEM majors (Bettinger and Long,

2005; Breda et al., 2023; Carrell, Page and West, 2010; Porter and Serra, 2020; Riley, 2024; Canaan

and Mouganie, 2022; Mulhern, 2023). To address the second channel, in-person, individualized
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counseling and coaching have been shown to substantially increase academic performance in STEM,

particularly among female students (Bettinger and Baker, 2014; Carrell and Sacerdote, 2017;

Canaan, Deeb and Mouganie, 2022). Although these interventions are effective, they risk disproportionately

burdening female faculty and students, potentially reinforcing existing gender disparities, as women

already spend more time on service-related activities than men (Guarino and Borden, 2017; Buckles,

2019).

This paper focuses on an overlooked input: the in-class curriculum accompanied by small-scale

complementary initiatives. We exploit a quasi-experimental setting at a STEM-focused liberal arts

college in the United States, where in 2006 the CS department revised its introductory course

with the goal of attracting more women. Because this introductory course is required for all

incoming freshmen admitted to the college throughout the sample period, regardless of whether they

choose to major in CS, the reform affected the entire student body. The redesigned course placed

greater emphasis on the social relevance of CS, aiming to correct women’s misconceptions about

the discipline and to reduce feelings of inadequacy. Additionally, two complementary initiatives

aimed at encouraging participation in CS were launched around the same time: (1) offering

research opportunities to approximately 10 students immediately after their first year of college,

regardless of gender, and (2) sending approximately 5 female students per year to a CS conference.

Because the redesigned course and the complementary initiatives were introduced together, our

estimates capture their combined effect; we refer to this package as the curricular reform. Using

a difference-in-differences (DID) framework, we compare outcomes of women and men before and

after the reform, treating male students as the control group. We estimate the reform’s impact

on women’s major choices and subsequent post-graduation outcomes relative to men, drawing on

detailed individual-level institutional data that link academic records to post-graduation outcomes.

We find that the reform increased the probability that female students majored in CS by
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12.1 percentage points relative to male students. Despite concerns that delaying exposure to

specific foundational programming tools (e.g., object-oriented programming) could negatively affect

students’ subsequent academic performance, we do not find deterioration in any academic outcomes.

We also do not find evidence that the effect is driven by the increase in CS popularity among female

students at the national level. We confirmed through interviews with faculty and administrators

that the reform was initiated solely by the CS department and not part of a broader college-wide

reform. Instructor assignments for this course remained the same before and after the reform.

Furthermore, the reform significantly increased the earnings of female students in the labor market,

with women’s post-graduation earnings being about 16.9% higher than those of their male peers,

driven by sorting into higher-paying jobs. On the other hand, the reform decreased female students’

probability of pursuing graduate study right after college by 9 percentage points relative to their

male peers. The drop in graduate school attendance rate – where stipends are typically lower than

the salaries of typical college graduate jobs – explains half of the earnings gain.

The primary channel through which the reform increased female students’ probability of majoring

in CS is improved retention of students who intended to major in CS at admission. Prior to the

reform, female students who intended to major in CS were 22.9 percentage points less likely to

actually choose a CS major than their male counterparts. The reform, however, increased their

probability of choosing a CS major by 27.6 percentage points relative to their male counterparts,

making the gender gap in retention negligible. Our results provide limited evidence for other

channels, such as attracting female students to the CS major who did not intend to major in CS

at admission or having a higher fraction of female students in the incoming cohort who intended

to major in CS at admission.

The contribution of this paper is threefold. First, it identifies curricular design, paired with

initiatives that reshape departmental culture, as an effective policy lever for reducing gender gaps
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in STEM. Compared to role model interventions that may impose additional burdens on women in

STEM fields, curricular reforms can offer a more sustainable solution. Traditional structures and

curricula of STEM courses and STEM department culture often fail to cultivate students’ deeper

appreciation and understanding of a discipline’s broader relevance and contributions to other fields

and society, which may disproportionately affect women, who on average enter the college with

less prior STEM-related knowledge (Carlana and Fort, 2022; Shi, 2018) and place greater weight

on prosocial values in their careers (Burbano, Padilla and Meier, 2024; Burbano et al., 2024; Shi,

2018). Our study contributes to this literature by identifying the causal effect of reforming an

introductory STEM course and the accompanying cultural shift and uncovering the mechanisms

that drive increased female participation. Importantly, we find that the academic performance

of male students was not negatively affected by the curricular reform, indicating that the reform

benefits women without disadvantaging men.

Second, we add to a growing literature demonstrating the influence of pedagogical practices on

student achievement. Duquennois (2022) shows that students from low socioeconomic backgrounds

perform worse on math exam questions involving calculations with fictitious money and subsequent

questions due to the attention-capture effects of poverty. Similarly, Griselda (2024) reveals that

female students perform worse in free-entry mathematics questions than in multiple-choice questions.

Additionally, interactive and collaborative learning, together with real-world examples and data,

improves female students’ grades in introductory economics courses (Avery et al., n.d.; Owen and

Hagstrom, 2021) and mathematics scores (Di Tommaso et al., 2024). We complement this literature

by linking curricular design to academic outcomes, major choice, and post-graduation outcomes.

Lastly, we demonstrate how a more accurate presentation of STEM fields can reshape students’

major decisions, especially among women. Previous studies argue that differences in preferences for

job amenities (Wiswall and Zafar, 2018; Zafar, 2013) and family expectations (Wiswall and Zafar,
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2021), as well as women’s greater emphasis on prosocial values (Shi, 2018) are the main drivers of

women’s decisions not to enter STEM fields, while others show that women underestimate expected

future earnings associated with certain majors, which in turn affects their major choices (Reuben,

Wiswall and Zafar, 2017). Furthermore, a related literature finds that emphasizing communal or

social goals increases women’s interest and engagement in STEM (Boucher et al., 2017; Barrera

et al., 2024). We contribute to this body of work by showing that presenting STEM fields in ways

that emphasize their broader relevance can substantially improve women’s persistence in STEM.

2 Background

In this section, we provide a brief overview of the college and describe the details of the reform.

Our setting is a STEM-focused liberal arts college in the United States that offers six core majors:

computer science, engineering, mathematics, physics, biology, and chemistry. Students may also

pursue joint majors (e.g., mathematics and computer science or mathematics and biology) by

completing courses across departments. All first-year students, regardless of their intended majors,

are required to take and pass a common set of introductory courses in their first semester, including

the introductory computer science course that is the focus of this study.

Until 2005, this course was Java-based and focused on object-oriented programming and problem

solving. The instructors identified several limitations of this course. First, its content was too simple

for some students yet too challenging for others, and its pace did not accommodate varying skill

levels. Second, and more importantly, because the course focused on object-oriented programming,

its structure and curriculum did little to help students develop a richer understanding of CS as a

discipline or to appreciate its broader contributions to other fields and society.

In 2006, in light of these limitations, the CS department replaced the existing course with a

redesigned curriculum using Python, instead of Java, as the main programming language. The
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new curriculum still covered the basic programming skills necessary in an introductory course,

but it moved away from focusing on object-oriented programming. Instead, the new curriculum

incorporated a wide range of practical applications in science and engineering, demonstrating the

importance of CS across other fields and emphasizing its relevance to real-world problem solving

(Dodds et al., 2008; Alvarado, Dodds and Libeskind-Hadas, 2012).1

Introductory courses in certain STEM fields, such as CS, often create the perception that some

students possess substantially more prior knowledge than others. Such impressions disproportionately

affect female students and can undermine their confidence and interest in learning and continuing in

the field (Fischer, 2017; Mouganie and Wang, 2020). To address this misconception, the redesigned

course begins with hands-on assignments using a language invented by faculty in the department

specifically for this course. This language is completely new to all students, and this approach

therefore helps level the playing field and reduces the salience of pre-college experience.

In addition, the revised course offers two tracks designed to accommodate students with different

levels of prior experience. Before entering the college, all admitted students take an assessment

exam to evaluate their CS and programming knowledge. Based on the assessment results, students

with little to no prior experience are placed in the standard section, while those with a demonstrated

background are placed in the enrichment section. Both tracks cover the same core material, but

the enrichment section engages with more advanced and challenging applications of the same

foundational concepts. The split-track system keeps experienced students challenged without

intimidating those new to CS. As a result, the design fosters a more inclusive learning environment

for beginners, encouraging them to explore the discipline further. At the same time, it helps

correct misconceptions among experienced students, particularly the belief that CS is only about

programming.

1Bayer et al. (2020) presents a similar pedagogical approach in economics.
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During the reform period, the CS Department also implemented two complementary initiatives

aimed at increasing female students’ engagement in CS: (a) expanding undergraduate research

opportunities after students’ first year, available to both women and men, with approximately

10 students selected annually, and (b) supporting women’s participation in the Grace Hopper

Celebration of Women in Computing conference, with about 5 students attending each year. To

assess whether other college-wide initiatives might confound our estimates, we conducted interviews

with CS faculty and staff from the Office of Institutional Research. All interviewees confirmed that

the 2006 reform and accompanying initiatives were developed independently by the CS Department

and were not part of broader administrative efforts to increase female participation in STEM at the

college level. They also confirmed that instructor assignments for the redesigned course remained

the same before and after the reform.

The reform applied to students entering the college in Fall 2006 and after; students who

matriculated prior to Fall 2006 were unaffected. Because the curricular change, the split-track

system, and the concurrent initiatives (i.e., the research assistantships and the Grace Hopper

conference support) were introduced simultaneously, our estimate captures their combined treatment

effect. However, the ancillary initiatives that targeted female students (i.e., Grace Hopper conference

support) were small in scale. With an average female cohort size of 81.2 students post-reform, the

additional initiatives reach only about 6.2 percent of female students. Their contribution to the

estimated gender differential is therefore likely to be limited.

7



3 Data

3.1 Student Academic and Demographic Data

We obtain detailed student data at admission and graduation for all students in the 2000

to 2016 cohorts. Each entering cohort consists of 160 to 220 students. Information recorded

at admission includes students’ gender, race, SAT and/or ACT scores, other qualifications (SAT

subject tests, advanced courses at high school, etc.), and their intended major at the time of

admission. Information gathered at graduation includes students’ major, cumulative GPA, major

GPA, whether a student has dropped out without obtaining a diploma, and graduation year.

In addition, we obtain academic records for all students in the introductory CS course and its

subsequent optional advanced courses, including the semester each course was taken and the grades

received.

The college offers joint majors in addition to single majors, and 460 or 14.7% of students

pursued one of them during the sample period. We classify joint majors according to the field that

constitutes a substantial share of the required coursework. Specifically, we classify Chemistry and

Biology as Chemistry; Computer Science and Mathematics as Computer Science; Mathematics and

Biology as Biology; Mathematical and Computational Biology as Biology; and Mathematics and

Physics as Mathematics. While a small fraction of students (135 or 4.3% of all students across the

sample period) pursued a second major, we define majors based on students’ primary major.

Figure 1 plots the evolution of the percentage of female (solid black) and all students (dashed

black) across cohorts from 2000 to 2016 within each core major, along with the percentage of female

students at the college (dotted blue). The red vertical dashed line indicates the timing of the 2006

curricular reform.

Biology and chemistry have consistently had a high female share throughout the period, with
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Figure 1: Share of Female and All Students by Majors, 2000 to 2016 Cohorts
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      Red line: the reform year

Notes: This figure presents the evolution of the percentage of female (solid black) and all students (dashed black)
across cohorts from 2000 to 2016 within each core major, along with the percentage of female students at the college
(dotted blue). The red vertical dashed line indicates the CS curriculum reform in 2006.

some dip in the reform year, although the total percentage of students in these majors is relatively

small. Mathematics and physics are more popular among female students than male students,

although less so than biology and chemistry. Engineering remained one of the most popular majors

throughout the period, and its female share closely tracks the overall college trend, showing no

apparent shift associated with the reform. In contrast, before 2006, CS had been unpopular

especially among female students. Following the reform, however, the share of female students

in CS rose sharply, from about 15 to 20 percent to over 40 percent by 2016. The share of total

students also rose after the reform, although not as much as the female share. This noticeable
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increase around the reform contrasts with the relatively stable trends observed in other STEM

fields, confirming that the change reflects a CS-specific response rather than a broad institutional

or cohort-wide shift.

Figure 2: Share of Female and All Students by Intended Majors at Admission, 2000 to 2016
Cohorts
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Notes: This figure presents the evolution of the percentage of female (solid black) and all students (dashed black)
across cohorts from 2000 to 2016 within each core major they intended to pursue at the time of admission, along with
the percentage of female students at the college (dotted blue). The red vertical dashed line marks the curriculum
reform in 2006.

Figure 2 presents the evolution of the percentage of female (solid black) and all students (dashed

black) across cohorts from 2000 to 2016 within each core major they intended to pursue at the time

of admission, along with the percentage of female students at the college (dotted blue). The red

vertical dashed line marks the CS curriculum reform in 2006.
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Before the reform, the female share of CS-intending students was around 15-20 percent and was

historically the lowest among all majors. Following the reform, the share of women who intended

to major in CS noticeably increased to over 30% by 2016. By contrast, biology and chemistry

maintained a high female share throughout the period. Engineering, mathematics, and physics had

the lowest female shares, while the female share in physics trended upward starting around 2010.

3.2 Labor Market Earnings Data

To measure students’ labor market outcomes, we obtained placement data from the Office of

Advancement, which includes company names, job titles, and the start and end dates (if available)

of post-graduation employment. Employment information is primarily collected via self-reports

on students’ alumni profiles. For students who do not update their profiles, the office manually

verifies employment history using online platforms, LinkedIn, a widely used professional networking

website that is broadly representative of college-educated individuals and white-collar professions

(Amanzadeh, Kermani and McQuade, 2024). Economists have increasingly used LinkedIn data to

study workforce composition, worker demographics, and earnings (Berry, Maloney and Neumark,

2024; Amanzadeh, Kermani and McQuade, 2024; Wheeler et al., 2022). The quality of our data is

higher than that of conventional web-scraped LinkedIn data due to the manual review process.

Since the first position has the lowest percentage of missing observations, we focus on earnings

at the start of the career (i.e., the first job post-graduation). To obtain earnings information

for positions, we first verified company names by cross-referencing official company websites. We

then linked job titles and the company’s industry to the most similar Standard Occupational

Classification (SOC) code. The median income associated with the corresponding SOC code in

the Occupational Employment and Wage Statistics (OEWS) is assigned as the student’s estimated
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earnings.2 Excluding those who have attended graduate school, 93% of the observations with

available earnings data had a start date within five years of graduation. Employment information

is incomplete and missing for 47.0% of students in the sample, a rate slightly lower than prior studies

using the same data source (Firoozi, 2025). While more students have missing data post-reform

(55.1% compared to the pre-reform of 29.4%), there are no systematic differences by gender (see

Appendix Table A1).

About 28.1% of students in the sample pursued graduate degrees. To estimate stipends for

students entering graduate school, we scraped data from the PhD Stipends website3, which contains

self-reported stipend information from graduate students. The median stipend reported for U.S.

graduate programs in a given year was assigned to students entering graduate school that year.

A potential concern is that pursuing a graduate degree typically results in lower earnings during

the schooling period, and the share of students pursuing a graduate degree is substantially lower

among CS and Engineering majors compared to other STEM disciplines.4

3.3 Summary Statistics

Table 1 presents summary statistics on the demographics and academic outcomes of male and

female students in the 2000 to 2016 cohorts. Panel A reports variables related to students’ decisions

to major in CS. Panel B reports students’ first-job salaries and graduate school enrollment. Panel

C summarizes academic outcomes. Panel D presents pre-college academic characteristics measured

at admission. Panel E summarizes the racial and ethnic composition of the sample by gender.

Compared to male students, female students show weaker interest in the CS major, with lower

rates of majoring in CS (7 percentage points), lower intentions to major in CS at admission (6

2https://www.bls.gov/oes/tables.htm (retrieved July 12, 2025).
3https://www.phdstipends.com/ (retrieved July 13, 2024).
4In our sample, the percentage of students pursuing a PhD is 12.2% in CS, while it is 36.2% in biology, 65.9% in
chemistry, 55.0% in physics, and 19.9% in engineering.
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Table 1: Summary Statistics

Female
(N=1,223)

Male
(N=1,902)

Difference
(Male – Female)

Mean SD Mean SD Mean SE

Panel A: CS Major Outcomes

Majoring in CS 0.23 0.42 0.30 0.46 0.07*** 0.02
Intending to Major in CS 0.11 0.31 0.17 0.38 0.06*** 0.01
Took 1st Optional CS Course 0.50 0.50 0.51 0.50 0.01 0.02
Took 2nd Optional CS Course 0.36 0.48 0.43 0.50 0.08*** 0.02

Panel B: Post-Graduation Outcomes
Salary at First Job ($1,000) 65.79 33.25 71.56 34.31 5.77*** 1.70
Pursued Graduate Studies 0.31 0.46 0.26 0.44 -0.04* 0.02

Panel C: Academic Outcomes
Cumulative GPA 3.30 0.42 3.34 0.46 0.04** 0.02
Major GPA 3.30 0.44 3.38 0.44 0.08*** 0.02
Years to Graduation 4.06 0.54 4.07 0.48 0.00 0.02
Dropped Out 0.04 0.21 0.04 0.20 -0.00 0.01

Panel D: Pre-College Information

SAT Math Score 748.31 41.12 760.34 49.47 12.03*** 1.63
SAT Verbal Score 713.36 61.40 712.86 66.31 -0.50 2.32
SAT Total Score 1461.19 81.91 1473.88 99.50 12.70*** 3.27
Took SAT STEM Subject Test 0.82 0.38 0.79 0.41 -0.04*** 0.01
Took SAT Non-STEM Subject Test 0.03 0.17 0.03 0.18 0.01 0.01

Panel E: Race/Ethnicity

Asian 0.23 0.42 0.17 0.38 -0.06*** 0.01
Black 0.01 0.10 0.02 0.14 0.01** 0.00
Hispanic 0.02 0.15 0.04 0.20 0.02*** 0.01
White 0.52 0.50 0.53 0.50 0.01 0.02
Multi-race 0.05 0.22 0.03 0.18 -0.02** 0.01
Other 0.16 0.37 0.20 0.40 0.04*** 0.01

Notes: This table reports summary statistics on students’ academic and demographic characteristics. Panel A
presents variables related to students’ decisions to major in CS. Both the first and second optional CS courses are
required for students who choose to major in CS. The first course serves as a prerequisite for the second, although
students may place out of the first course and enroll directly in the second. Panel B presents student salaries at
their first job and graduate school enrollment. Panel C summarizes academic outcomes. Panel D reports pre-college
academic characteristics measured at admission. ACT scores are converted into SAT scores using the ACT/SAT
concordance tables. Panel E summarizes the racial and ethnic composition of the sample. The ”Other” category
includes American Indian/Alaska Native, Native Hawaiian/Other Pacific Islander, Unknown race, and Nonresident.
P-values for differences in means are calculated using Welch’s t-test. Statistical significance is denoted by ∗∗∗p <
0.01, ∗∗p < 0.05, ∗p < 0.1.

percentage points), and an 8 percentage point lower likelihood of taking an optional advanced

CS course. Note that the optional courses are not capped in the short run; any students who
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wish to take these advanced courses can do so. Panel B presents job outcomes, indicating that

after graduation, female students have a slightly higher likelihood of attending graduate school (4

percentage points). Additionally, female students earn, on average, $5,770 less annually than male

students. Panel C shows that, on average, female students have slightly lower cumulative GPAs

(0.04 points) and major GPAs (0.08 points) than male students.

Panel D details student characteristics at admission, showing that female students have slightly

lower SAT math scores (12.03 points) and total scores (12.70 points).5 Panel E presents the racial

distribution of students, indicating that female students are more likely to be Asian (6 percentage

points) and multi-race (2 percentage points), less likely to be Black (1 percentage point), Hispanic

(2 percentage points), or Other race (4 percentage points).

4 Empirical Specification

We adopt an event study approach to evaluate whether and to what extent the curricular reform

affected female students’ major choice and post-graduation outcomes relative to male students.

Specifically, we estimate the following model:

Outcomei =

2016∑
t=2000,t̸=2005

βt
11[c(i) = t]×Femalei+β2Femalei+X ′

iγ1+Postc(i)×X ′
iγ2+τc(i)+ϵi (1)

Our primary outcomes of interest are: (a) a student’s choice of majors, where Outcomei equals 1 if

student i majors in CS, and 0 otherwise; (b) labor market earnings, where Outcomei is the natural

logarithm of a student’s annual salary at their first job after graduation; and (c) whether a student

pursues a graduate degree after graduation, where Outcomei equals 1 if student i attends graduate

school, and 0 otherwise. We also examine the effects on various academic outcomes.

5ACT scores are converted to SAT scores using the 2018 ACT/SAT concordance tables: https://www.act.org/

content/dam/act/unsecured/documents/ACT-SAT-Concordance-Tables.pdf (retrieved April 2, 2024).
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Femalei equals 1 if student i is female, and 0 otherwise. τc(i) represents the cohort fixed effects,

which absorb any cohort-specific characteristics, including the female share. As shown in Table 1,

nearly all students graduate on time in four years, and a student’s entry year is aligned with their

graduation year. Therefore, the cohort fixed effects in our specification absorb not only differences

across entering cohorts but also any shocks that occur around the time students leave the college,

including graduation-year labor-market conditions or institution-wide factors that vary by cohort.

Lastly, we add a set of student-specific academic and demographic characteristics Xi as controls,

including race fixed effects, SAT math and verbal scores, and additional qualifications such as

whether a student took SAT subject tests or advanced high school courses. We interact Xi with

a dummy variable indicating post-reform cohorts, Postc(i), to account for potential composition

changes in post-reform cohorts and shifts in how they relate to outcomes after the reform. ϵi is an

idiosyncratic error term. Standard errors are clustered at the cohort level.

Our coefficients of interest are βt
1 (t ≥ 2006), which capture the effect of the reform on female

students’ outcomes relative to male students in post-reform cohorts.

The key identifying assumption is parallel trends: in the absence of the reform, female and male

students’ time trends would have evolved in the same way. While we cannot test it directly, the

coefficients βt
1 (t < 2006), which capture differences in outcomes between female and male students

in each pre-reform cohort relative to the baseline year, allow us to assess the plausibility of this

assumption.

To obtain the average effect of the reform, we also estimate a version of equation 1. Specifically,

we replace the cohort-by-female interactions,
∑2016

t=2000,t̸=2005 β
t
11[c(i) = t]× Femalei, with a single

post-reform-by-female interaction, Postc(i) × Femalei:

Outcomei = β1Postc(i) × Femalei + β2Femalei +X ′
iγ1 + Postc(i) ×X ′

iγ2 + τc(i) + ϵi (2)

15



All variables are as defined in equation 1. We report β1 along with the event study results.

We estimate both equations 1 and 2 via OLS. Because our treatment is binary, occurs in the

same year for all treated units (non-staggered design), and includes a never-treated group, OLS

provides consistent estimates (see, e.g., Baker et al., Forthcoming).

5 Results

5.1 Effect on Major Choice

Figure 3: Effect of Curricular Reform on Major Choice
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Notes: This figure presents point estimates and 80% and 95% confidence intervals for βt
1 from equation 1. The

outcome is a binary indicator for whether a student majored in CS. The curricular reform was implemented in
2006, and the coefficient for the baseline cohort (2005) is normalized to zero. Standard errors are clustered at the
cohort-year level. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

Figure 3 plots event-study estimates of female students’ probability of majoring in CS around

the 2006 curricular reform. Note that the coefficients are relative to the year before the reform. The

pre-reform path shows that the difference between female and male students remained relatively
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stable in the years leading up to the reform, consistent with the parallel trends assumption.

Following the reform, the probability rose by roughly 12.1 percentage points on average.

Table 2: Effects of Reform on Academic Outcomes

Sample: All Graduates CS Graduates

Outcome: Cum. GPA Major GPA Yrs to grad. Dropped Out (0/1) Cum. GPA Major GPA Yrs to grad. Dropped Out (0/1)
(1) (2) (3) (4) (5) (6) (7) (8)

Female × Post 0.019 0.027 -0.083 -0.010 0.009 0.010 -0.028 -0.005
(0.039) (0.042) (0.050) (0.014) (0.114) (0.088) (0.051) (0.061)

Female -0.059* -0.095** 0.063 0.013 -0.051 -0.092 -0.014 -0.008
(0.032) (0.037) (0.047) (0.013) (0.109) (0.082) (0.040) (0.059)

Cohort Year FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
Pre-Treated Mean 3.206 3.239 4.077 0.055 3.176 3.231 4.104 0.077
Adj. R-squared 0.111 0.095 0.012 0.009 0.117 0.094 0.060 0.034
Observations 3122 3104 2990 3122 864 862 817 864

Notes: This table presents OLS estimates of equation 2. The model is estimated for various academic outcomes (i.e.,
cumulative GPA, major GPA, years to graduate, likelihood of dropping out) among all and CS graduates. Standard
errors are clustered at the cohort-year level and are in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

Academic Outcomes One concern about not covering foundational topics such as object-oriented

programming in the introductory course is that it could harm academic outcomes in advanced

classes. A related worry is that if major GPA falls after the reform, it may indicate that newly

attracted students have less prior experience in CS, although this is not necessarily a negative

outcome.

Table 2 presents DID estimates for various academic outcome measures. Columns (1) to (4)

report results for all graduates, while columns (5) to (8) focus on CS graduates. Overall, there is no

evidence that the reform negatively affected female students’ academic performance or persistence

compared to their male counterparts.

Male Students’ Academic Outcomes Another potential concern is that the estimated effects

reported in Table 2 only reflect changes in the outcomes of male students rather than increases

among women. For example, male students’ performance could have worsened due to the reform,

driving the differential gender gap. To address this concern, we compare male students’ academic

outcomes before and after the reform, controlling for all student-specific academic and demographic
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Table 3: Male Students’ Academic Outcomes

Sample: All Graduates CS Graduates

Outcome: Cum. GPA Major GPA Yrs to grad. Dropped Out (0/1) Cum. GPA Major GPA Yrs to grad. Dropped Out (0/1)
(1) (2) (3) (4) (5) (6) (7) (8)

Post 0.093*** 0.050* -0.003 -0.016 0.091 0.084 0.016 -0.005
(0.029) (0.027) (0.021) (0.009) (0.055) (0.057) (0.040) (0.033)

Controls Y Y Y Y Y Y Y Y
Pre-Treated Mean 3.280 3.351 4.052 0.047 3.246 3.357 4.105 0.074
Adj. R-squared 0.100 0.084 0.014 0.015 0.088 0.076 0.020 0.013
Observations 1900 1890 1823 1900 577 576 543 577

Notes: This table reports estimated coefficients from regressions of male student outcomes on a post-reform indicator
(post = 1 for cohorts entering in 2006 or later). Each column corresponds to a different outcome variable. All
regressions include controls for race, math, and verbal exam scores, and indicators for STEM subject tests, with
standard errors clustered at the cohort-year level. Statistical significance is denoted by ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p <
0.1.

characteristics in Table 3.

Although descriptive, the results are inconsistent with the concern. Male students’ cumulative

GPA and major GPA rose by 0.09 and 0.05 points after the reform, while their years to graduation

and dropout rates remained statistically unchanged. The small and positive post-reform coefficient

for men suggests that the reform did not harm male students and, if anything, modestly improved

their academic outcomes. Appendix Figure A1 plots the time trend of average male students’

outcomes and shows there is no significant deterioration either.

College vs. National Trend of CS Majors It is possible that national efforts to promote

women’s participation in CS contributed to changes in the female student composition over time.

In Figure 4, we compare the percentage of CS degrees earned by women at the college to national

trends using data from the Integrated Postsecondary Education Data System (IPEDS), maintained

by the National Center for Education Statistics (NCES).6 As shown in the figure, the share of

CS degrees earned by women at the college consistently lagged behind the national average for

cohorts entering between 2000 and 2005. However, beginning with the 2006 cohort – the year

of the curricular reform – the college’s female representation in CS surpassed the national level

6https://nces.ed.gov/ipeds/ (retrieved July 21, 2025). We define CS degrees as those classified under “Computer
and Information Sciences, General” (CIP Code 11.0101) or “Computer Science” (CIP Code 11.0701).
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Figure 4: Share of CS Degrees Earned by Women: National vs the College, 2000 to 2016 Cohorts
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Notes: This figure plots the percentage of CS degrees earned by women at the college level (the solid line) and
the national level (the dashed line) for cohorts entering in years 2000 to 2016. The data are from the Integrated
Postsecondary Education Data System (IPEDS). We define CS degrees as those classified under “Computer and
Information Sciences, General” (CIP Code 11.0101) or “Computer Science” (CIP Code 11.0701).

and has generally trended upward, despite some year-to-year fluctuations. In contrast, female CS

representation at the national level declined in the early 2000s and only gradually recovered. By

2016, the national share remained below its 2000 level, whereas the college’s share had substantially

increased.

5.2 Effects on Post-Graduation Outcomes

Labor Market Earnings Figure 5 presents the year-by-year impact of the curricular reform on

female students’ earnings at the first job. Note that the labor market analysis uses graduation-year

earnings but plots effects by entry cohort. Thus, the 2006 coefficient is shown at 2006 even though

the corresponding earnings are observed post-graduation. We present the results in this manner

to ensure comparability across all outcomes. The pre-reform differences between female and male

students are noisier than the differences in Figure 3, but do not exhibit any downward or upward

19



Figure 5: Labor Market Earnings Effects of Reform
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Notes: This figure plots point estimates and 80% and 95% confidence intervals of βt
1 from equation 1. The outcome

is the natural logarithm of labor market earnings at a student’s first post-graduation job, measured using the median
salary associated with the student’s SOC code based on employer and job title. The curricular reform was implemented
in 2006, and the coefficient for the baseline cohort (2005) is normalized to zero. Standard errors are clustered at the
cohort-year level. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

pattern.

The figure shows that the reform increased women’s median post-graduation earnings by approximately

16.9% (e0.156−1 ≈ 0.169) relative to men. With a pre-treatment mean log(median income) of 10.704,

the implied pre-reform median annual income among women is about $44,500 (e10.704 = $44, 534).

Applying the 16.9% effect gives an earnings gain of roughly $7,526 for women after the reform

(0.169× $44, 534 = $7, 526).

Note that because our earnings data is defined at the occupation category level, the effects

observed in Figure 5 only capture occupational sorting. In fact, when we add fixed effects for

occupation categories (SOC codes) of students’ first job, the labor market earnings effect disappears

(Appendix Figure A3). Thus, these results indicate that the curricular reform significantly boosted

early labor market earnings among female students due to improved occupational sorting.
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Figure 6: Effects on Graduate School Attendance
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Notes: This figure presents point estimates and 80% and 95% confidence intervals of βt
1 from equation 1. The outcome

variable is a dummy indicator representing whether a student chose to attend graduate school after graduating from
the college. The curricular reform was implemented in 2006, with the coefficient for the baseline cohort (2005)
normalized to zero. Standard errors are clustered at the cohort-year level. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

Graduate School Attendance Another important post-graduation outcome is whether students

pursue graduate study to obtain advanced skills. Figure 6 reports event-study estimates of the

probability that female students enroll in graduate school around the reform. The figure shows

that the reform decreased female students’ probability of pursuing graduate study by 9 percentage

points. An important caveat is that our data only contains students who pursue a graduate degree

right after graduation. Therefore, the results do not include students who enter graduate school

later after working.

One concern is that the earnings effect may be solely due to the drop in graduate school

attendance rate among female students, as graduate school stipends are typically lower than a

typical salary in the labor market. To address this concern, Column 1 of Appendix Table A2

presents heterogeneity in the earnings effect between graduate school attendees and non-graduate
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school attendees. The coefficient estimate on the interaction between female and post-reform

dummies is 0.077 and statistically marginally significant at 10%, suggesting that those who went

to the job market right after graduation still earned 8.0 percentage points (e0.077−1 ≈ 0.080) more

than their male counterparts, which is about half the earnings gain in Figure 5.7

Thus, the results suggest that the reform increased female students’ probability of majoring

in CS without deteriorating their academic performance, and that the effect is not driven by

national-level trends. The reform also increased female students’ earnings in their first job through

improved occupational sorting and decreased the probability of pursuing graduate study immediately

after graduation. About half of the earnings effect reflects reduced graduate school attendance, with

the remainder driven by sorting into higher-paying occupations among labor market entrants.

6 Mechanisms

In this section, we investigate the mechanisms through which the curricular reform increased

female students’ probability of majoring in CS as well as the post-graduation outcomes.

6.1 Mechanisms for Major Choice

Regarding the increase in female students’ probability of majoring in CS, there are three

possible channels: (i) retention: improved retention among women who intended to major in CS

at admission; (ii) switching: increased switching into CS among students who did not intend to

major in CS at admission; and (iii) composition change: more women intending to major in CS at

admission.

For this purpose, we augment equation 2 to allow the effect of the reform to vary by whether a

7The results remain quantitatively similar after controlling for intended major fixed effects in column 2.
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student intended to major in CS at admission:

Outcomei =β1Postc(i) × Femalei × IntendCSi + β2Postc(i) × Femalei + β3Femalei × IntendCSi+

β4Postc(i) × IntendCSi + β5Femalei + β6IntendCSi +X ′
iγ1 + Postc(i) ×X ′

iγ2 + τc(i) + ϵi

(3)

where IntendCSi is a dummy variable indicating whether a student i intended to major in CS

at admission. Other variables are as defined in equation 2. We estimate this equation with and

without fixed effects for students’ intended major.

β1 identifies the effect of the reform on CS-intending female students (retention) and β2 the

effect of the reform on non-CS-intending female students (switching). Adding intended major fixed

effects shows us these effects net of composition change.

Table 4 presents OLS estimates of equation 3. In column 1, the coefficient estimate on CS-intending

students is 0.57 and highly statistically significant, suggesting that before the reform, male students

who intended to major in CS at admission were 57 percentage points more likely to choose a CS

major than those who did not intend to major in CS. However, female students who intended

to major in CS at admission were 22.9 percentage points less likely to choose a CS major than

their male counterparts, as shown in the sum of the coefficient estimate on the interaction between

female and CS-intending dummies and female dummy. Non-CS-intending female students were 7.4

percentage points less likely than their male counterparts to major in CS in the pre-reform period,

as shown in the coefficient estimate on female.

The coefficient estimate on the triple interaction among female, post-reform, and CS-intending

students is 0.25 and statistically significant at 5%. This suggests that the reform’s effect on CS

major choice was substantially larger for CS-intending female students than for non-CS-intending

female students, or equivalently, that the effect of the reform on female students relative to male
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Table 4: Effect Heterogeneity by CS-Intending Students

Outcome: Major in CS (0/1) Attend GS (0/1) Log Median Income at First Job
(1) (2) (3) (4) (5) (6)

Female × Post x Intend CS 0.250** 0.254** 0.029 0.037 0.021 0.010
(0.101) (0.102) (0.122) (0.128) (0.162) (0.170)

Female × Post 0.025 0.021 -0.082** -0.094** 0.128** 0.142***
(0.023) (0.024) (0.035) (0.039) (0.045) (0.045)

Female -0.074*** -0.067*** 0.102*** 0.094*** -0.200*** -0.183***
(0.010) (0.012) (0.016) (0.022) (0.021) (0.018)

Female × Intend CS -0.156* -0.164* 0.023 0.025 -0.026 -0.035
(0.086) (0.087) (0.100) (0.106) (0.105) (0.111)

Post x Intend CS -0.095 -0.103 -0.036 -0.061 -0.054 -0.023
(0.063) (0.065) (0.046) (0.046) (0.049) (0.050)

Intend CS 0.570*** -0.102*** 0.204***
(0.049) (0.022) (0.025)

Joint significance

Female × Post x Intend CS
+ Female × Post

0.276*** 0.276*** -0.053 -0.057 0.149 0.153
(0.092) (0.091) (0.110) (0.112) (0.149) (0.152)

Female × Intend CS
+ Female

-0.229*** -0.231*** 0.125 0.119 -0.226** -0.218*
(0.078) (0.077) (0.087) (0.091) (0.104) (0.109)

Cohort Year FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Intended Major FE Y Y Y
Pre-Treated Mean 0.079 0.079 0.402 0.402 10.704 10.704
Adj. R-squared 0.233 0.242 0.098 0.129 0.144 0.173
Observations 3122 3122 1672 1672 1669 1669

Notes: This table presents OLS estimates of equation 3. The model is estimated for CS major dummy (columns 1
to 2), graduate school attendance dummy (columns 3 and 4), and log median income at the first job after graduation
(columns 5 to 6). Columns 2, 4, and 6 include intended major fixed effects. Standard errors are clustered at the
cohort-year level and are in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

students was concentrated among those who intended to major in CS at admission. The reform

increased the probability of CS-intending female students majoring in CS by 27.6 percentage points.

In contrast, the coefficient estimate on female times post is small and statistically insignificant,

suggesting that non-CS-intending female students did not experience a differential change in CS

major choice relative to their male counterparts. The coefficient on post times CS-intending

students is negative but statistically insignificant, suggesting no significant change in CS major

choice among male CS-intending students post-reform.

Column 2 adds intended major fixed effects and presents essentially the same results, suggesting

that composition changes by intended major are unlikely to drive the observed effect. Appendix
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Figure A2 corroborates this: the overall effect falls by about half when intended major fixed effects

are added to Figure 3, reflecting the smaller contribution of non-CS-intending students – who show

little response to the reform – to the estimate.8

Thus, the effect observed in Figure 3 primarily comes from the retention channel: the reform

improved persistence among female students who intended to major in CS at admission. There

is little evidence that switching by non-CS-intending students or composition changes in entering

cohorts contributed meaningfully to this effect.

6.2 Mechanisms for Post-Graduation Outcomes

Graduate School Attendance Columns 3 and 4 of Table 4 present OLS estimates of equation 3

but with a dummy indicating graduate school attendance after graduation as the outcome. Looking

at column 3, the coefficient estimate on the CS-intending students is -0.102 and statistically highly

significant. This suggests that CS-intending male students were 10.2 percentage points less likely

to pursue graduate study than non-CS-intending male students, consistent with the fact that CS

major students are less likely to pursue it. Non-CS-intending female students were 10.2 percentage

points more likely to attend graduate school than non-CS-intending male students, as shown in

the coefficient estimate on female dummy. As shown in the small and statistically insignificant

coefficient estimate on the interaction between female and CS-intending dummies, female students

were more likely to attend graduate school regardless of their intended major at admission.

Interestingly, the drop in the probability of attending graduate school among female students

after the reform is not only driven by CS-intending students: the coefficient estimate on the

interaction between female and post-reform dummies is negative and statistically significant at

5% while the coefficient estimate on the interaction among female, post-reform, and CS-intending

8Figure 3 captures the policy-relevant effect one would expect from implementing the reform at another college with
a similar composition of entering students, as it reflects the weighted average across all students. The attenuation
in Appendix Figure A2 confirms this effect is driven by the small but high-impact group of CS-intending students.
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dummies is small and statistically insignificant. The coefficient estimate on the interaction between

post-reform and CS-intending dummies is also small and statistically insignificant. The magnitude

of the coefficient estimate on the interaction between female and post-reform dummies is -0.082,

close to the event study estimate in Figure 6. These results remain quantitatively similar after

we control for intended major fixed effects in column 4, and suggest that composition change is

unlikely to drive the results.

Thus, the drop in graduate school attendance rate after the reform is unlikely to be due to

increased CS majors among female students. Since the effect is already observed in year 1 of the

reform, one plausible explanation is that the exposure to the revised introductory CS course sparked

their interest in applying what they learned in society, and encouraged female students to take jobs

rather than attend graduate school.

Labor Market Earnings Columns 5 and 6 of Table 4 present OLS estimates of equation 3 but

with log median income at the first job as the outcome. The coefficient estimate on CS-intending

students in column 5 is 0.204 and highly statistically significant, suggesting that before the reform,

male students who intended to major in CS earned 22.6 percentage points (e0.204−1 ≈ 0.226) more

than male students who did not intend to major in CS, likely because they were 57 percentage

points more likely to major in CS and CS major students are less likely to pursue graduate school

right after graduation. The higher earnings among CS-intending students apply to female students

as well, as shown in the small and statistically insignificant coefficient estimate on the interaction

between CS-intending students and female dummies. However, there was a gender gap in earnings:

looking at the coefficient estimate on female dummy, non-CS-intending female students earned 18.1

percentage points (e−0.200 − 1 ≈ −0.181) less than non-CS male students before the reform.

Looking at the coefficient estimate on the triple interaction among female, post-reform, and
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CS-intending dummies, the estimate is quantitatively small and statistically insignificant. On the

other hand, the coefficient estimate on the interaction between female and post-reform dummies is

0.128 and statistically significant at 5%. This suggests that the reform increased non-CS-intending

female students’ post-graduation earnings by 13.7 percentage points (e0.128 − 1 ≈ 0.137) relative

to their male counterparts, and the effect does not differ significantly between CS-intending and

non-CS-intending students. This suggests that the earnings gains are not concentrated among

CS-intending students but instead reflect broader benefits to female students. On the other hand,

the reform did not increase CS-intending male students’ post-graduation earnings meaningfully, as

shown in the small and statistically insignificant coefficient estimate on the interaction between

post-reform and CS-intending dummies. These results remain quantitatively the same after we

control for intended major fixed effects in column 6, and suggest that composition change is unlikely

to drive the results.

Thus, the labor market earnings effects operate regardless of whether they intended to major

in CS at admission, and are therefore unlikely to be due to increased CS majors among female

students.

7 Conclusion

This paper studies whether a curricular reform in an introductory computer science (CS) course

that emphasized the social relevance of the discipline affected female students’ CS major choice and

post-graduation outcomes. Using rich administrative data on academic outcomes and labor market

placements, we find that the reform increased the probability that female students majored in

computer science by 12.1 percentage points. This shift was driven primarily by greater retention

of female students who intended to major in CS at admission. Importantly, these gains were not

accompanied by any decline in academic performance as measured by GPA, dropout rates, and
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years to graduation.

Crucially, the reform also translated into improved labor market outcomes: it increased female

students’ earnings by 16.9 percent relative to their male counterparts, driven both by reduced

graduate school attendance and by sorting into higher-paying occupations. Taken together, our

findings suggest that curricular reform in gateway STEM courses can increase women’s participation

and improve their labor market outcomes.

Our analysis has some limitations. First, it focuses on a single STEM-focused liberal arts

college. While the college also offers options to major in non-STEM subjects, effects may differ at

universities where non-STEM majors are more widely available. Second, we estimate the combined

effect of the redesigned introductory CS course and two complementary initiatives associated with it;

although the initiatives are small-scale, we cannot separately identify their individual contributions

or potential complementarities with the curriculum redesign. Third, our labor market outcomes

capture early-career earnings. How these translate into longer-term outcomes remains an open

question – especially whether those who chose not to pursue graduate study can acquire additional

skills later in their careers. Nevertheless, we provide causal evidence that curricular reform can be

an effective policy lever for narrowing gender gaps in STEM fields.
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Appendix

A Additional Figures and Tables

Figure A1: Male Students’ Academic Outcomes over Time
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Notes: This figure plots the mean of four academic outcomes, including cumulative GPA, major GPA, years to
graduation, and dropout rate among men over the study period (years 2000 to 2016), where the CS curriculum
reform in 2006 is marked with a red dashed vertical line.

Table A1: Percentage of Students with Missing Placement Data

Gender Pre Post

Male 30.0% 54.6%
Female 28.2% 55.8%

Notes: This table reports the percentage of students with missing placement data, by reform period and gender.
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Figure A2: Effect of Curricular Reform on Major Choice (With Intended Major Fixed Effects)
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Notes: This figure presents point estimates and 80% and 95% confidence intervals for βt
1 from equation 1 when

fixed effects for students’ intended major at admission are added as an additional control. The outcome is a binary
indicator for whether a student majored in CS. The curricular reform was implemented in 2006, and the coefficient
for the baseline cohort (2005) is normalized to zero. Standard errors are clustered at the cohort-year level. ∗∗∗p <
0.01, ∗∗p < 0.05, ∗p < 0.1.
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Figure A3: Labor Market Earnings Effects of Reform (With Occupation Fixed Effects)
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Notes: This figure plots point estimates and 80% and 95% confidence intervals of βt
1 from equation 1 when fixed

effects for the SOC code of students’ first job are added as an additional control. The outcome is the natural logarithm
of labor market earnings at a student’s first post-graduation job, measured using the median salary associated with
the student’s SOC code based on employer and job title. The curricular reform was implemented in 2006, and the
coefficient for the baseline cohort (2005) is normalized to zero. Standard errors are clustered at the cohort-year level.
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
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Table A2: Effect Heterogeneity by Graduate School Attendance

Outcome: Log Median Income at First Job
(1) (2)

Female × Post x GS Attendee -0.058 -0.056
(0.043) (0.044)

Female × Post 0.077* 0.072*
(0.043) (0.041)

Female -0.132*** -0.120***
(0.038) (0.037)

Female × GS Attendee 0.113*** 0.115***
(0.035) (0.034)

Post x GS Attendee -0.023 -0.019
(0.038) (0.036)

GS Attendee -1.213*** -1.210***
(0.029) (0.029)

Joint significance

Female × Post x GS Attendee
+ Female × Post

0.019* 0.016
(0.011) (0.012)

Female × GS Attendee
+ Female

-0.019*** -0.004
(0.005) (0.008)

Cohort Year FE Y Y
Controls Y Y
Intended Major FE Y
Pre-Treated Mean 10.704 10.704
Adj. R-squared 0.843 0.844
Observations 1669 1669

Notes: This table presents OLS estimates of equation 2, allowing the effect to vary by students’ graduate school
attendance status post-graduation. The model is estimated for the log median income at the first job after graduation.
Column 2 includes intended major fixed effects. Standard errors are clustered at the cohort-year level and are in
parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
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